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What this presentation Is all
about ?

A personal account of (some) key issues in the emerging field of machine learning
( relevant to the engineering practice)
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Why a presentation on Machine Learning ?
The “hype cycle” (2017-Gartner)
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The “hype cycle” (2018-Gartner)
(In data science and machine learning)
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“Priority Matrix™ tor Artiticial Intelligence
(2018 Gartner)

Priority Matrix for Artificial Intelligence, 2018

benefit yvears to mainstream adoption
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It’s all Greek to me

How we learn / know something:

 Techne (skill) - Knowing by doing. A carpenter learns to build by building, a
potter by making pots.

 Epistemé (science) - Knowing by demonstration. Scientific facts are capable
of being repeatedly demonstrated.

 Nous (intuition) - Knowing without the demonstration of invariable facts.

Nicomachean Ethics - Aristotle
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It’s still Greek to me

The pertinent questions :
what are we learning and why?
The Aristotelian answer:

The goal of episteme” is to know truth from falsehood. The goal of
phronesis (nous) Is to know good from bad, and the goal of techne is to
know how to express and appreciate beauty.

The Aristotelian view:

Each of these kinds of knowledge Is a uniguely human capacity,
thus the aim of learning is to help human beings become more
fully human.

Nicomachean Ethics - Aristotle 0
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(Lay) Definitions — |

Learning: The activity or process of gaining knowledge or skill by
studying, practicing, being taught, or experiencing something. (Merriam
Webster Dictionary).

Machine: a mechanically, electrically, or electronically operated device for
performing a task. Archaic : a constructed thing whether material or
Immaterial. (Merriam Webster Dictionary).
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(Lay) Definitions - I

« Artificial Intelligence (Al): the broader concept of machines being
able to carry out tasks in a way that we would consider “smart”. !

Machine Learning (ML): a current application of Al based around the

Idea that we should really just be able to give machines access to data
and let them learn for themselves. !
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Machine Learning: Big Picture

Activation model

of the neuron Backpror?agation Con‘volution Supp-ort Vector
(McCulloch, 1943) algorithm on zip codes Machlr?es - SVM
(Rumelhart, 1986) (Lecun, 1989) (Vapnik, 1995)
1.5=
°
2
2
S 1.25-
£
>
—
®
'E 1[].-.____| ........................ - f‘ ................................................................................................................
[~ -~
B _ /
u = 4
L) - !
§ . {w :Lxl : ,—————x 1 —_———
o sesyioptaidl | Resolutonby ' ' Criticismof \ 14 Al winter
5 [ logic ! ' the Perceptron | S o .
B8 \ (Robinson, 1965) / ‘\ (Minsky, 1969) / 1--‘“‘3}" '--"'\-I-T‘
: e / Evnar ¢ collapse
0.66= N i o e, W o e e 1;
I i I I I | |
1940 1950 1960 1970 1980 1990 2000

Publication year of cited references
(1935-2005)

Credit: Carlos E Perez

#2 The Edward S. Rogers Sr. Department
ﬁ of Electrical & Computer Engineering
&% UNIVERSITY OF TORONTO




June 2017

Data-Knowledge spectrum

--NO KNOWLEDGE

e.g., almost everything!

PARTIAL UNDERSTANDING OF DATA
e.g., visual object detection

MATHEMATICAL MODEL OF DATA
e.g., logistic modeling of growth

LAWS OF NATURE
e.g., Newton's second law

KNOWLEDGE
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Types of Learning
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Problems to be solved w/t Al
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Example: Computational Pathology (CP)

Definition Simlfed Patdog Deptment Stk

Digital Pathology
(Scanning, QC, P-PACS,

Computational Pathology investigates a complete probabilistic mage Processirg, ..

treatment of scientific and clinical workflows in general pathology,
8, It combines experimental design, statistical pattern recognition

and survival analysis within an unified framework to answer Pathology Informatics

(EFR, LIS, Barcoding, fRFID, ..

scientific and clinical questions In pathology.

[Fuchs 2011]

Wet Laboratory
(Physical Side Production, Cutting, Staining, ...
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Deep Neural Networks — Where we are

June 2017

Frameworks & Libraries

NN
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Image Credit : Ferenc Huszar
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The “Data Sets” (laboratory style)
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The “Data Sets” (laboratory style)

Dataset Sizes: Computer Vision vs. Computational Pathology

1 Whole Slide
= 100,000 x 60,000

= 6 billion pixels

CIFAR-10

(32*32)*60k= 61.44 million pixels
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The “Data Sets” (laboratory style)

Dataset Sizes: Computer Vision vs. Computational Pathology

All of ImageNet
482 x 415 * 14,197,122
= 2.8 trillion pixels

Image Credit : Thomas J Fuchs & PAIGE.Al

474 Whole Slides

100,000 x 60,000 *474
= 2.8 trillion pixels
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Modern Deep Neural Networks (DNN)

DEEP LEARNING APPROACH

Errors
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Convolutional NN (DNN) in popular blogs - |

2. Sherlock builds 1st set of feature maps,
1. Input Image looking for basic features like lines, colors and

basic shapes
3. Sherlock builds 2nd set of feature

maps, looking for more complex features
like nostrils, eyes, or lips

&4 magnifying
glasses for

16 magnifying 64 feature maps

glasses for
16 feature maps

Sherlock Holmes
the "Feature Detective”..... ...
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Convolutional NN (DNN) In popular blogs - Il

Convolutional Neural Net (CNN)

262,144 (H) »« 1 (W) x 1 (D) F(H) =1 (W)x1l[D)
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Inputs - How computers see Flatten - Lining up all the clues
Feature Detection - Think like Sherlock Holmes

Convolution Math - Sherlock Holmes' detective kit

Fully Connected - Connecting the dots in the case

Logit + Softmax - Cracking the case

O o N O

RelLU - Non-linear pattern recognition Cross-Entropy Loss - Sherlock’s "rightness/wrongness’

g & W N =

Max Pooling - Keeping the most important clues
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A mostly complete chart of
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http://www.asimovinstitute.org/neural-network-zoo/

Training Hardware

Deep Learning Hardware (2016)

GPUs: Nvidia is dominating

One of the first GPU neural nets was on a r“"D|A®

NVIDIA GTX 280 up to 9 layers neural
network. (2010 Ciresan and Schmidhuber)

Nvidia chips tend to outperform AMD

More importantly, all the major frameworks
use CUDA as first-class citizen. Poor
support for AMD’s OpenCL
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Libraries — A ‘revolution’ in the making ?

Python For Data Science Cheat Sheet

You'll use the lgand spa:z modules. Note that : |  contains and expands on
: Matrix Functions
= - Creating Matrices Addition

O

The SciPy library is one of the core packages for S
scientific computing that provides mathematical @ Sci F:"-Tr Basic Matrix Routines

algorithms and convenience functions built on the
MumPy extension of Python.
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Deep Learning - Real World Problems
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Neural Nets - Challenges

Statistically impressive, but
Individually unreliable

‘Deep Visual-Semantic Alignments for
Generating Image Descriptions”

by Andrej Karpathy, Li Fei-Fei (CVPR
2015).

a young boy is holding a
baseball bat 48
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Neural Nets - Challenges

Panda - o Gibbon

less than 1% N _
57.7% confidence targeted distortion 99.3% confidence

King penguin Starfish
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Neural Nets - Challenges

&*' TayTweets (3 L Follow
B o

@ReynTheo RITLER DID NOTHING WRONG!

dil SEMa
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On Deep Neural Networks

‘ D Bored Yann LeCun
g .-:'i'

@boredyannlecun

Spend the holidays with your family, not
reading arXiv papers. You'd be wasting your

time anyway because—2019 spoiler alert—
*CONVOLUTION IS ALL YOU NEED!

7:10 PM - 23 Dec 2018
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Myth

Machine Learning = Deep Neural Networks

Quiz question: When the term “A.l. Winter” was invented and why ?

54
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Machine Learning Algorithms Cheat Sheet

Prefer

Categorical

ZduUS5iar

Mixture Mode Probability Variables
P Need to
daticiie Specify k

Data Is

Too Large Explainable

Maive Bayes

Credit: Hui Li, SAS Analytics, April 2017
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Dimension
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Unsupervised Learning: Dimension Reduction

Topic = T ** Latent Dirichlet
Misthliog Probabilistic
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P e St
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Principa
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Predicting
MNumeric

Supervised Learning: Regression

F Decision Tree
Speed or Pt -
Accuracy Linear Regrassior
ACCURACY

Random Forest
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A definition revised:

“Machine learning (ML): a subset of artificial intelligence (Al) Is
more than a technique for analyzing data. It's a system that is
fueled by data, with the ability to learn and improve by using
algorithms that provide new insights without being explicitly
programmed to do so.”

Gartner, “Preparing and Architecting for Machine Learning”, Technical Professional Advice, published January 17, 2017.

G10)
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Engineering Cycle of Machine Learning

Organize

Feature Model
Engineering | Engineering

Model

Evaluation
Problem

Taxonomy
Performance

Engineering

2
>
o
O

<C

o
cC
©
c

L)

o

Compute
Optimization

P R Y A
{1 } r

© 2017 Gartner
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Machine Learning — Skills Set Requirements

Data Processing and Feature Engineering

: : Some Dynamic
Processing Engine Programming Skills

MNecessary
Heavy Data Engineering - -~ J Feature Engineering

o Tran:_;form— Normalization Cleaning and , Includes feature
Data Acquisition ation Encoding extraction and feature Execution

4 ™ transformation
Data
Ingest

ERP \ '::: "" - *Qﬁ A #:

Sample Selecflon Trainin
Databases Preprocessing P Testing

Stream

OOW OIS

—»

Malnframe Exp:trig?we nt- Testing Tuning | I [ I I

/' Model Engineering ;

loT Batch Data (Model Fitling and Model Evaluation) ; S

Devices Warehouse :

Machine Algorithms ' Data
' Storage /

Clustering Leaming
Algorithm Algorithm Execution

Heavy Data Scientists and Some Data Architects

© 2017 Gartner, Inc.
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What I1s the expected impact & where

Machine learning has great impact potential across industries and use case types Impact potential
Low High

Transport and

Automotive
Manufacturing
Consumer
Agriculture
Health care
Pharma-
ceuticals
Telecom
logistics

Problem type

Real-time
optimization

Strategic
optimization

Predictive
analytics

Predictive
maintenance

Radical
personalization

Discover new
trends/anomalies

Forecasting

Process
unstructured data

SOURCE: McoKinsey Global Instifute analysis
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Big Picture
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Explainable Artificial Intelligence

@ Introduction - The Need for Explainable Al

=

AlphaGo

]
-
L
q
=

@ntering & new : W hy did you dothaed's
age EI:J-.| apphc aticns Why not something else?
e [Wachene arming s Crperations WWhen do you SUCCead’y
e care technolagy Bl - When do you fail ?
= hachine learming _ . | . v hen can | brest you'y
mioc :le = Aare opague ! : e How do | commectan emor?
(g ]y |||I Vvilk, Bl -
(= pp

und E'r'EJI:I d

= The current generation of Al systems offer tremendous benefits, but their effectiveness will
be limited By the machineg s mnmakkiity 1o esplain 1ts decisions and actions 1o users.

» Explainable Al will be essantial if users are o understand, appropriately trust, and
effectively manage this incoming generation of artificially intelligent partners.
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Explainable Al in Medical Applications

Reasonable AT:

=The abilityv to
understamd the
reasornirye bekind
each individaal
predictior

Traceable AT: Understandable

Al
Tl ability 1o trace R .

from losic of math e rstarnc 1_|::||=_-_

algo to nature of model upon which

data_ the AT decision-
making is based

Credit: Saurabh Kaushik
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An old (?) paradox

The Moravec’s Paradox (1988): “it is comparatively
easy to make computers exhibit adult level performance on
Intelligent tests or playing checkers, and difficult or
Impossible to give them the skills of a one-year-old when it
comes to perception and mobility” .1

The paradox is sometimes simplified by the phrase: Robots
find the difficult things easy and the easy things difficult.

1 Hans Moravec, Mind Children: The Future of Robot and Human Intelligence, Harvard University Press, 1988,

(ISBN 0674576187).
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https://en.wikipedia.org/wiki/Special:BookSources/0674576187

Human Intelligence Characteristics

Fostering research on human-like Al 1

» Efficient use of resources. meta-reasoning

» Efficient use of data: meta-learning

Meta-reasoning: human meta-cognition/active learning: awareness of
one’s own internal states; accuracy of memory; confidence in
judgment; reasoning intelligently on how to collect information;
Intelligently re-use elements of cognitive and motor skKills.

Meta-learning: efficient use of data; leverage commonalities across
tasks that all have a similar character.

T.L. Griffiths et al, Doing more with less: meta-reasoning and meta-
79

learning in humans and machines, Current Opinion in Behavioral : . b
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Big Picture
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Epilogue

Machine learning Is best-suited for dealing with big, albeit curated, data.

Supervised networks (DNN) can learn semantically relevant representations
useful in areas such as (image) classification, content-aware advertising,
content filtering, social networks.

Preparing data for Machine Learning pipelines is challenging.

Machine Learning implies “learning” — the ability to generalize from experience
— not yet there.
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Thank you!
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