

## **Deep Learning for Target Detection**

Presenter: **Prof. Anastasios Tefas**Aristotle University of Thessaloniki
tefas@csd.auth.gr
www.multidrone.eu

Contributors: V. Nousi, D. Triantafyllidou, M. Tzelepi, A. Tefas, N. Nikolaidis, I. Pitas (Aristotle University of Thessaloniki)











• Target/object examples: athletes, boats, biclycles.













- Single view object detection
  - Deep learning (CNN) object detection.
  - Light weight CNNs for object detection.



- MultiDrone
- Object detection = classification + localization:
- Find what is in a picture as well as where it is.

Classification

Classification + Localization

**Object Detection** 







CAT

CAT

CAT, DOG, DUCK





- Input: an image.
- Output: bounding boxes containing depicted objects.
  - Each image contains a different number of objects (outputs).
- Typical approach: train a **specialized classifier** and deploy in **sliding-window style** to detect all object of that class.
  - Very inefficient, quite ineffective.
- Goal: combine classification and localization into a single architecture for multiple, multiclass object detection.





- **Classification:** If we have a class label set  $C = \{c_1, ..., c_l\}$ , train a NN model to assign a class label vector  $\hat{y} \in [0, 1]^L$  to an object x:  $\hat{y} = f_{NN}(x, \theta)$ , where  $\theta$  are the CNN trainable parameter vector.
  - Essentially, we assign (predict) probabilities  $P(\hat{y} \mid x)$  that an object x belongs to each of the L classes.
  - **Training:** Given  $N_{\text{training}}$  ground truth pairs  $\{x_i, y_i\}$ ,  $i = 1, ..., N_{\text{training}}$  estimate  $\theta$  by minimizing an error function  $\min_{\theta} J(y \hat{y})$ .
  - **Testing:** Given  $N_{test}$  ground truth validation pairs  $\{x_i, y_i\}$ ,  $i = 1, ..., N_{test}$  calculate (predict)  $\hat{y}_i$ ,  $i = 1, ..., N_{test}$  and calculate a performance metric.





- Classification:
  - Two class (L=2) and multiple class (L>2) classification.
  - **Example:** Face detection (two classes), face recognition (many classes).





- **Regression:** If we have a function y = f(x), train a NN model to predict **real-valued quantities** (vector y entries),  $\hat{y} = f_{NN}(x, \theta)$ , so that an error function  $\min_{\theta} J(y \hat{y})$  is minimized.
  - **Training:** Given  $N_{\text{training}}$  ground truth pairs  $\{x_i, y_i\}, i = 1, ..., N_{\text{training}},$  estimate  $\boldsymbol{\theta}$  by minimizing an error function  $\min_{\boldsymbol{\theta}} J(\boldsymbol{y} \widehat{\boldsymbol{y}})$ .
  - **Testing:** Given  $N_{test}$  ground truth validation pairs  $\{x_i, y_i\}$ ,  $i = 1, ..., N_{test}$  calculate (*predict*)  $\hat{y}_i$ ,  $i = 1, ..., N_{test}$  and calculate an error function  $J(y-\hat{y})$ , e.g. MSE.



- Regression:
  - **Example:** In object detection, regress object ROI parameters (width *W*, height *H*, offsets *X*, *Y*).
  - Function approximation: it is essentially regression, when the function y = f(x) is known.





- **Classification:** train a model to assign a category to an object, i.e., predict a probability of the object belonging to a certain class, i.e. *Pr(class | object)*.
- **Regression:** train a model to predict **real-valued quantities**, e.g., ROI width W, height H, x and y offsets.



## Object detection performance metrics



• **IoU**: Intersection over Union of predicted ROI (bounding box) A with ground truth ROI B:

 $J(A, B) = |A \cap B|/|A \cup B|$ 

Also called Jaccard Similarity Coefficient).















$$IoU = 0.7$$







$$IoU = 0.9$$

## Object detection performance metrics



- Object detection output: bounding boxes Aij with corresponding confidence scores Sij.
- If  $A_{ij}$  is matched to a groundtruth box  $B_{ik}$ , according to  $J(A_{ij}, B_{ik}) > T(B_{ik})$ , then  $z_{ij} = 1$ .
- The threshold T(Bik) depends on the box size:

$$T(B_{ik}) = min(0.5, H*W / (H+1)*(W+1)).$$



# Object detection performance metrics

MultiDrone

- Recall, Precision definitions.
- For a confidence threshold *t* (real number):

$$recall(t) = \Sigma_{ij} \ 1[s_{ij}>=t]z_{ij}/C,$$
 (C is the number of classes)   
  $precision(t) = \Sigma_{ij} \ 1[s_{ij}>=t]z_{ij}/\Sigma_{ij} \ 1[s_{ij}>=t].$ 

■ **Mean Average Precision** is calculated over n=1,...,N levels of recall, by varying the confidence threshold:

$$mAP = 1/N \Sigma_n precision(t_n).$$



- False Positive (FP) vs
   True positive (TP) plots,
   as a function of detection threshold e.g.,
   for various training stages.
- The closer the curve is to the upper left corner, the better.







#### MultiDrone

## **Training**

- All approaches treat localization as a regression problem to find [A, W, X, Y] using a CNN.
- All these CNNs utilize a mixed classification + localization loss of the form:

$$\mathcal{L}(a, \mathcal{I}; \theta) = \beta_1 * \mathbf{1}[a \text{ is positive}] * \ell_{loc}(\phi(b_a; a), f_{loc}(\mathcal{I}; a, \theta)) + \beta_2 * \ell_{cls}(y_a, f_{cls}(\mathcal{I}; a, \theta))$$

 $\beta_1$  and  $\beta_2$  balance the localization and classification losses.

- $\alpha$  is the best matching ground truth ROI (anchor box) for the detected ROI (box)  $b\alpha$ .
- 1[ $\alpha$  is positive]: indicator vector (vector of ones, if  $\alpha$  matches  $b\alpha$  with good IoU).
- $f_{loc}$  is the localization CNN function,  $f_{cls}$  is the classification CNN function.
- *loc, lcls* are loss functions, e.g., MSE, cross-entropy.

  This project has received funding from the European Union's Horizon 2020 research

and innovation programme under grant agreement No 731667 (MULTID

## **Object detection with CNNs**



• **Deep Learning** (DL) approach: train a classifier on, say, 1000 classes of ILSVRC.

- **OverFeat** (2013) was one of the first DL approaches to object detection. Its convolutional method made multi-scale sliding window efficient.
- Based on AlexNet architecture.



## **Object detection with CNNs**





Overfeat: Object detection at increasing image resolutions



Sermanet, Pierre, et al. "Overfeat: Integrated recognition, localization and detection using convolutional networks." *International Conference on Learning Representations (ICLR2014), CBLS, April 2014.* 2014.



**Object detection with CNNs** 

MultiDrone

• Impact of Deep Learning.

Pascal VOC (object detection)





• R-CNN: Regions with CNN features.



- Three step approach:
  - Extract **region proposals** using an external proposal method (i.e., **Selective Search**). Cropped and resized proposed input image regions form **crops**, always having the same size.
  - Extract CNN features for each crop.
  - Classify features with an SVM.
  - **Regress** Region Of Interest (ROI) height (H) and width (W) based on the proposed and validated crops.





#### R-CNN: Regions with CNN features

warped region



1. Input image



2. Extract region proposals (~2k)





tvmonitor? no.

aeroplane? no.

person? yes.

Girshick, Ross, et al. "Rich feature hierarchies for accurate object detection and semantic segmentation." Proceedings of the IEEE conference on computer vision and pattern recognition. 2014.





- Region selection based on Selective Search:
- Alternative to exhaustive, sliding-window search.
- Based on region segmentation techniques.
- Starting from **over-segmentation**, merge similar regions and produce region proposals.
- Merged regions are proposed.







#### Fast R-CNN



- R-CNN weaknesses:
  - Use of multiple overlapping proposed regions (crops) of the input image.
    - Too many **duplicate computations**.
  - Three stage architecture.



#### **Fast R-CNN**



- Fast R-CNN dealt with these weaknesses:
  - Input image is passed once from a CNN (ConvNet) to generate a **CNN feature map** (big speedup).
  - Selective search is used to generate region proposals, but crops were taken from the CNN feature map, instead of the input image (**ROI pooling**). Crops have always the same size.
  - The pooled features are then fed to the remainder of the network, consisting of **fully connected layers** for classification and ROI H, W refinement through regression.



#### Fast R-CNN

- Fast R-CNN weaknesses:
  - Multiple overlapping Rols
    - duplicate computations.
  - **Externally** computed region proposals (selective search).



Girshick, Ross. "Fast R-CNN." Computer Vision (ICCV), 2015 IEEE International Conference on. IEEE, 2015.





#### **Faster R-CNN**





R-CNN: The Faster Region shares Network **Proposal** the with feature layers extracting network and internally produces region selective proposals (no search).

Yuan, Peng, Yangxin Zhong, and Yang Yuan. "Faster R-CNN with Region Proposal Refinement."



### **Faster R-CNN**



- The Region Proposal Network (RPN) produces proposals based on an *objectness* score, computed based on the **feature map activations.**
- The feature map is trained using ground-truth objects to produce high objectness score in their ROIs.
- The proposals are used by the RoI pooling and fed into the remainder of the (fully connected) layers for classification.
- Still, part of the computation depends on the number of proposals, making it quite slow.



#### **Faster R-CNN**





Huang, Jonathan, et al. "Speed/accuracy trade-offs for modern convolutional object detectors." *IEEE CVPR*. 2017.



#### R-FCN



- **R-FCN**: Region-based Fully Convolutional Networks.
- Only convolutional layers, thus fully convolutional.
- Like Faster R-CNN, but crops features from the last layer prior to prediction (region classification and refinement).
- This **immensely decreases the per-region computation** that must be done.



### R-FCN

#### MultiDrone





Huang, Jonathan, et al. "Speed/accuracy trade-offs for modern convolutional object detectors." *IEEE CVPR*. 2017.



#### SSD



- SSD: Single-Shot Detector.
- **Region-based object detection** (R-CNN, Fast R-CNN, Faster R-CNN, R-FCN): accurate, but **too slow for real-time** applications.
- SSD approach: Combine a classification network and bounding box regression into single architecture, without any external steps or duplicated computations.



### SSD



- It uses *anchors* (ROIs of precomputed size and aspect ratio). No region proposals are used.
- Anchors are overlapped at various spatial locations, aspect ratios and scales of the feature maps on various CNN layers.
- During training, anchor location and size are refined via regression to better fit objects.



#### SSD





Huang, Jonathan, et al. "Speed/accuracy trade-offs for modern convolutional object detectors." *IEEE CVPR*. 2017.



#### SSD



- Example: The cat has 2 anchors (ROIs) that match on the 8x8 feature map, but none match the dog. We choose the one having biggest IoU and refine it.
- On the 4x4 feature map there is one anchor that matches the dog and is

refined.



Liu, Wei, et al. "Ssd: Single shot multibox detector." European conference on computer vision. Springer, Cham, 2016.





YOLO: You Only Look Once.

 The first version of YOLO was published before SSD, and lacked in precision of localization.



#### MultiDrone

Simpler YOLO architecture: Darkenet 19 convolutional network plus FC layer.

Prediction only at the final convolutional feature map.





Liu, Wei, et al. "Ssd: Single shot multibox detector." European conference on computer vision. Springer, Cham, 2016.





- YOLO divides the input image into an SxS grid.
- If the **center** of an object falls within a cell of the grid, that cell is responsible for detecting that object.
- N is the maximal number of bounding boxes that each grid cell can detect.
- Each cell predicts *N* **bounding boxes** and confidence and classification scores for those boxes.



#### MultiDrone





Redmon, Joseph, et al. "You only look once: Unified, real-time object detection." *Proceedings of the IEEE conference on computer vision and pattern recognition.* 2016.







- **Confidence** is measured as *Pr(Object) \* toU(truth, pred)*, corresponding to a) how confident the model is that the box contains an object and b) how accurate it thinks the predicted box is.
- Each ROI is assigned **five object predicted values**: *H, W, X,Y* and *confidence*.
- The maximal number of detected objects is *NxSxS*, where *N* is the maximal number of detections per grid cell.



#### YOLO v2



- Fully convolutional, no densely-connected layers:
  - It may be run at varying input sizes.
- It can utilize **multi-scale capabilities** during training as well.
- Very fast architecture and implementation.
- Uses precomputed anchors.



#### YOLO v2



Anchors: precompute a predefined number of anchors (typically 5) by running k-means on all object ROIs of training set, using IOU as the error to minimize.



#### YOLO v2



- Input: Image of arbitrary size HxW best to be a multiple of 32, as the network downsamples by 32.
- Output: (H/32) x (W/32) x ((C+5)\*N)
  - C is the number of classes to predict
  - N is the number of precomputed anchors to fit bounding boxes.
  - Depth d=(C+5)\*N.
- For one class and five anchors (e.g., bicycles): (H/32) x (W/32) x
   30.



#### MultiDrone

#### YOLO v2/ TinyYOLO

- **Input RGB image:** arbitrary size H, W. Preferable sizes: odd multiples of 32. (416x416 = 13x32x32x13 pixels).
- Output feature map: H/32xW/32xd=13x13x125 (d=125).
   Depth d (depends on the number of object classes and number of anchors used).
- TinyYOLO has same input/output but half the number of the convolutional layers.

Therefore, it is much faster.

```
filters
            32 3 x 3 / 1
 0 conv
                             416 x 416 x
 1 max
 2 conv
            64 3 x 3 / 1
                             208 x 208 x
 3 max
 4 conv
 5 conv
                             104 x 104 x 128
 6 conv
 7 max
                                                           52 x 256
 8 conv
           256 3 x 3 / 1
                              52 x 52 x 128
                                                           52 x 128
 9 conv
                                    52 x 256
                                                     52 x 52 x 256
10 conv
           256 3 x 3 / 1
                              52 x 52 x 128
11 max
12 conv
                                                           26 x 512
13 conv
                                   26 x 512
                                                           26 x 256
14 conv
15 conv
                                   26 x 512
                                                           26 x 256
16 conv
17 max
                                                           13 x 512
18 conv
          1024 3 x 3 / 1
                                                           13 x1024
19 conv
20 conv
          1024
                3 x 3 / 1
                                                           13 x1024
21 conv
                                                           13 x 512
22 conv
          1024
                                   13 x 512
                3 x 3 / 1
                                                           13 x1024
          1024 3 x 3 / 1
23 conv
                                   13 x1024
                                                           13 x1024
24 conv
          1024 3 x 3 / 1
                                   13 x1024
                                                           13 x1024
25 route
26 conv
                                                     26 x 26 x 64
27 reorg
                                                           13 x 256
28 route 27 24
          1024 3 x 3 / 1
29 conv
                                                           13 x1024
           125
                              13 x 13 x1024
                                                           13 x 125
30 conv
               1 x 1 / 1
31 detection
```



#### **Network parameters**



- Any feature extractor can be used for the feature extraction step of detection:
  - VGG16
  - ResNet, ResNet-101
  - Inception, Inception V2, V3
  - MobileNets.
- **MobileNets** were recently introduced by Tensorflow as a lightweight alternative:
  - The standard convolution is replaced by depth-wise separable convolutions, reducing the number of parameters and FLOPs.



#### **Mobilenets**

- Standard convolutional filters:
- N D<sub>k</sub>xD<sub>k</sub> filters, depth M (M=3 for RGB images).
- Depth-wise separable convolutional filters (Mobilenet):
- M D<sub>k</sub>xD<sub>k</sub> filters of depth 1, one per input channel (M=3 for RGB images)
   and
- N 1x1 filters (essentially weighted averaging of the M channels produced by the previous step).



(a) Standard Convolution Filters

MultiDrone



(b) Depthwise Convolutional Filters



(c)  $1 \times 1$  Convolutional Filters called Pointwise Convolution in the context of Depthwise Separable Convolution

Howard, Andrew G., et al. "MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications."



### **CNN** comparison







### **CNN** comparison



Huang, Jonathan, et al. "Speed/accuracy trade-offs for modern convolutional object detectors." *IEEE CVPR*. 2017.



#### Input image resolution NxN

### MultiDrone



Huang, Jonathan, et al. "Speed/accuracy trade-offs for modern convolutional object detectors." *IEEE CVPR*. 2017.



#### **Number of Region Proposals**



Huang, Jonathan, et al. "Speed/accuracy trade-offs for modern convolutional object detectors." IEEE CVPR. 2017.



### **CNN** comparison



Faster R-CNN is more accurate but slower.

• YOLO, SSD are much faster but not as accurate.

 YOLO, SSD make more mistakes when objects are small and have trouble correctly predicting the exact location of such objects.



### Object detection acceleration



- Examples of acceleration techniques:
  - Input size reduction.
  - Specific object detection instead of multi-object detection.
  - Parameter reduction.
  - Post-training optimizations with TensorRT (NVIDIA), including FP16 (floating point 16 bit) computations.



- MultiDrone
- 80°8°
- YOLO: good precision in general, but too heavyweight:
  - small objects are more challenging.
- Evaluation on VOC:

| Input<br>Image<br>Size | FPS | mAP   | Forward time (ms)<br>No TensorRT | Forward time (ms)<br>TensorRT | Forward time (ms)<br>FP16 |
|------------------------|-----|-------|----------------------------------|-------------------------------|---------------------------|
| 608x608                | 2.9 | 71.26 | 241.5                            | 128.8                         | 69.3                      |
| 544x544                | 3.2 | 73.64 | 214.4                            | 121.2                         | 64.3                      |
| 480x480                | 5.4 | 74.50 | 155.4                            | 62.3                          | 35.7                      |
| 416x416                | 6.4 | 73.38 | 155.3                            | 56.5                          | 32.5                      |
| 352x352                | 7.8 | 71.33 | 111.0                            | 45.0                          | 24.3                      |
| 320x320                | 8.5 | 70.02 | 103.0                            | 40.4                          | 22.8                      |

- MultiDrone
- Tiny YOLO: low precision, but very lightweight.
- Evaluation on VOC:

| Input<br>Image<br>Size | FPS  | mAP   | Forward time (ms)<br>No TensorRT | Forward time (ms)<br>TensorRT | Forward time (ms)<br>FP16 |
|------------------------|------|-------|----------------------------------|-------------------------------|---------------------------|
| 608x608                | 6.5  | 51.28 | 76.5                             | 37.5                          | 22.1                      |
| 544x544                | 8.2  | 52.93 | 68.4                             | 34.8                          | 20.5                      |
| 480x480                | 13.4 | 55.00 | 50.1                             | 17.2                          | 11.7                      |
| 416x416                | 16.5 | 56.28 | 49.9                             | 15.7                          | 10.3                      |
| 352x352                | 20   | 55.05 | 37.1                             | 13.0                          | 7.9                       |
| 320x320                | 23   | 53.81 | 34.0                             | 11.7                          | 7.2                       |





- SSD: generally good precision, not as fast, still prone to mistakes when objects are small.
- MobileNets and Inception V2 can be used as feature extractors to provide speed ups.
- Tensorflow Implementation (subject to Tensorflow's memory mishandling).



MultiDrone

#### MobileNets

| Input Image<br>Size | FPS  | Recall |
|---------------------|------|--------|
| 300x300             | 11.6 | 84.1   |
| 224x224             | 13.4 | 81.1   |
| 192x192             | 18.2 | 80.0   |
| 160x160             | 21.0 | 77.4   |
| 128x128             | 23.8 | 71.4   |

#### Inception V2

| Input Image<br>Size | FPS  | Recall |
|---------------------|------|--------|
| 300x300             | 8.5  | 85.2   |
| 224x224             | 12.3 | 84.0   |
| 192x192             | 13.8 | 81.1   |
| 160x160             | 15.6 | 76.6   |
| 128x128             | 17.1 | 73.6   |



#### MultiDrone

#### **Object detection comparisons**

 SSD w/ MobileNets and Inception V2 for various input image sizes in Face Detection in FDDB facial data base. Curves are created by changing the confidence threshold.

• (Face recall in parentheses).





- Single view object detection
  - Deep learning (CNN) object detection.
  - Light weight CNNs for object detection.
- Multiple view object detection.





- State-of-the-art object detectors (YOLO, SSD, etc) are based on very Deep and multiple-channel CNNs.
- Light weight architectures can provide equally satisfactory results.
- Such architectures are trained with incremental positive and negative example mining methods.



#### MultiDrone

#### **Object detection**

- Light weight deep CNN architecture (~76K parameters).
- The network is fully convolutional.
- Input 32x32 pixel RGB image. Output d=2 (2 classes).

| layer  | kernel       | filters | input                    | output                   | parameters |
|--------|--------------|---------|--------------------------|--------------------------|------------|
| conv1  | $3 \times 3$ | 24      | $32 \times 32 \times 3$  | $30 \times 30 \times 24$ | 648        |
| prelu1 |              |         | $30 \times 30 \times 24$ | $30 \times 30 \times 24$ | 24         |
| conv2  | $4 \times 4$ | 24      | $30 \times 30 \times 24$ | $14 \times 14 \times 24$ | 9216       |
| prelu2 |              |         | $14 \times 14 \times 24$ | $14 \times 14 \times 24$ | 24         |
| conv3  | $4 \times 4$ | 32      | $14 \times 14 \times 24$ | $11 \times 11 \times 32$ | 12288      |
| prelu3 |              |         | $11 \times 11 \times 32$ | $11 \times 11 \times 32$ | 32         |
| conv4  | $4 \times 4$ | 48      | $11 \times 11 \times 32$ | $8 \times 8 \times 48$   | 24576      |
| prelu4 |              |         | $8 \times 8 \times 48$   | $8 \times 8 \times 48$   | 48         |
| conv5  | $4 \times 4$ | 32      | $8 \times 8 \times 48$   | $5 \times 5 \times 32$   | 24576      |
| prelu5 |              |         | $5 \times 5 \times 32$   | $5 \times 5 \times 32$   | 32         |
| conv6  | $3 \times 3$ | 16      | $5 \times 5 \times 32$   | $3 \times 3 \times 16$   | 4608       |
| prelu6 |              |         | $3 \times 3 \times 16$   | $3 \times 3 \times 16$   | 16         |
| conv7  | $3 \times 3$ | 2       | $3 \times 3 \times 16$   | $1 \times 1 \times 2$    | 288        |



Detection with Light weight deep CNNs.









Detection with Light weight deep CNNs.







- Detection with Light weight fully CNNs.
- The network is trained with 32x32 pixel training samples.
- It is fully convolutional and accepts images of arbitrary size.
- The network outputs a classification heatmap containing probability scores for each **32x32** pixel region of the input.





- Detection with Light weight deep CNNs.
- The method develops an image pyramid representation of varying resolutions and performs detection at multiple scales.







- MultiDrone
- Output heat maps are thresholded at the various pyramid layers.
- The image ROIs of size 32x32xl are created (I: pyramid level).
- The ROI parameters [X,Y,H,W] are clustered to create the final object ROIs.









- Evaluation of the model on a bicycle benchmark of RAI videos.
- True positive rate and False positive rate are evaluated for:
- Different heatmap thresholds,
- Hard negative/positive mining: increased training examples.









 Test execution time for a 32x32 pixel object ROI of the proposed CNN architecture using NVIDIA's tensorRT library (in msec):

| NVII     | DIA TX2     | geForce GTX 1080 |
|----------|-------------|------------------|
| tensorRT | no tensorRT |                  |
| 0.491933 | 2.84615     | 0.652406         |





- **Tracker node**: Given the initialized position of a target, the tracker T is responsible for estimating the bounding box of the target in the subsequent frames.
- **Detector:** Given a bounding box defining the target in specific frame produced by the tracker, the detector D is responsible for verifying this result, and then provide the appropriate feedback to the system.
- **Master Visual Analysis:** If the verification from D fails, Master Visual Analysis is responsible for the re-initialization of the tracker T with the corrected bounding box.



## MultiDrone

#### Algorithm 1: Joint Detection & Tracking Framework

- 1 Start Detection Node D
- 2 Start Tracking Node T
- 3 Start Master Visual Analysis MVA
- 4 Run D, T and MVA in parallel

#### **Algorithm 2:** Detection Node D

- 1 Initialize detection
- 2 if time for verification then
- 3 Verify the tracking result;
- if verification failed then
- Calculate ROI;
- Perform detection to ROI;
- Publish corrected message d;



## MultiDrone



- 1 if received a request from MVA then
- 2 Initialize tracking
- 3 if T is already initialized then
- Update tracking result;
- 5 Publish tracking message t;

#### Algorithm 4: Master Visual Analysis MVA

- 1 if T is not initialized then
- 2 Initialize tracker T;
- 3 if received a message d from D then
- 4 Reinitialize tracker T;



## Joint Detection & Tracking (JTD)







## Joint Detection & Tracking (JTD)



This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 731667 (MULTIDRONE)



# MultiDrone

• Target re-initialization by the detector in hard tracking cases when tracking algorithms fail.





# MultiDrone

• Target reinitialization by the detector in hard tracking cases when tracking algorithms fail.





MultiDrone

2

Q & A

## Thank you very much for your attention! www.multidrone.eu

